Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biol. Res ; 33(2): 167-175, 2000. ilus
Article in English | LILACS | ID: lil-443665

ABSTRACT

Atherosclerosis is one of the most common diseases and the principal cause of death in western civilization. The pathogenesis of this disease can be explained on the basis of the 'oxidative-modification hypothesis,' which proposes that low-density lipoprotein (LDL) oxidation represents a key early event. Nitric oxide (*NO) regulates critical lipid membrane and lipoprotein oxidation events by a) contributing to the formation of more potent secondary oxidants from superoxide (i.e.: peroxynitrite), and b) its antioxidant properties through termination reactions with lipid radicals to possibly less reactive secondary nitrogen-containing products (LONO, LOONO). Relative rates of production and steady state concentrations of superoxide and *NO and cellular sites of production will profoundly influence the expression of differential oxidant injury-enhancing and protective effects of *NO. Full understanding of the physiological roles of *NO, coupled with detailed insight into *NO regulation of oxygen radical-dependent reactions, will yield a more rational basis for intervention strategies directed toward oxidant-dependent atherogenic processes.


Subject(s)
Humans , Arteriosclerosis/metabolism , Cholesterol, LDL , Reactive Oxygen Species/metabolism , Oxidative Stress/physiology , Nitric Oxide/physiology , Oxidation-Reduction , Lipid Peroxidation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL